
8 The Delphi Magazine Issue 30

Writing A Cross Reference Tool
by Marco Cantù

➤ Figure 2: The CrossRef example main form at design time

In an article published in Issue 23
of The Delphi Magazine (and part

of my book Delphi Developer’s
Handbook) I described how to
write a parser to translate the
source code files of a Delphi pro-
gram into HTML, maintaining the
syntax-highlighting features of the
Delphi editor. In that article I men-
tioned an additional tool I had to
build for the CD-ROMs accompany
ing my recent books: a source code
cross-referencer. The key idea of
this cross-referencer is to create
an index with all the keywords,
class names, method names, prop-
erty names, VCL functions and
every custom identifier used in the
source code of a series of pro-
grams (actually hundreds of pro-
grams for my books). Of course the
index should be an HTML file and
the entries in the index should
have links back to the HTML files
with the source code. You can see
an example of the output of this
program in Figure 1.

In this article I want to share with
you a few of the design issues
involved in writing this program,
discuss portions of the source
code and show how the same
technique can be applied to a
totally different case: publishing a
database on the Web.

The Main Form
The cross reference tool I’ve built
works in three steps: it first
extracts a list of files to examine to
a ListBox, then extracts all the
identifiers of those files, building a
complex structure in memory, and
finally it builds the cross-reference
HTML files. Pressing a button acti-
vates each of these three steps.
You can see the program’s main
form at design time in Figure 2.
Keep in mind that this tool was
built for personal use only, so the
user interface is quite bare!

On the left of the form there are
several components. In the edit
box at the top the user can enter
the directory to examine. The

FileListBox component is
used by the program but
is invisible at run-time.
The three buttons below
are used to drive the pro-
gram. Below them there is
a progress bar and the list
box, which is filled with
the names of the source
files to examine. Finally,
the edit box on the bottom
is used to enter the book
or project description
that will appear on the top
of each generated HTML
file and the Save... button
is used to save the list of
words to skip to a file.

The central portion of
the form is covered by a
page control, which is
empty at start-up and will host 26
list boxes with the list of identifiers
found for each letter. The right side
of the form has two list boxes, one
with the list of identifiers to
exclude from the reference (the
“skip list”) and the other showing
the list of the files where each
identifier appears.

Extracting The files
The first step, extracting the files,
is quite simple and can be accom-
plished in many different ways.

The code of the first button is the
following:

FileListbox1.Directory :=
EditPath.Text;

ExamineDir (‘*.pas’);
ExamineDir (‘*.dpr’);
ExamineDir (‘*.dpk’);
Beep;

The ExamineDir method is a simple
recursive method. It uses a File-
ListBox component to examine the
files in the current directory which

➤ Figure 1: A portion of the cross-reference
from my last book, displayed in Internet
Explorer

10 The Delphi Magazine Issue 30

procedure TFormCrossRef.ExamineDir (Mask: string);
var
FileList: TStrings;
I: Integer;
CurrDir: string;

begin
FileListBox1.Mask := Mask;
FileListBox1.FileType := [ftNormal];
FileList := TStringList.Create;
try
FileList.Assign(FileListBox1.Items);
// for each file, add its path to the list
for I := 0 to FileList.Count - 1 do begin
ListBoxFiles.Items.Add(FileListbox1.Directory + '\' + FileList[I]);

end;
// examine sub directories
FileListBox1.Mask := '*.*';
FileListBox1.FileType := [ftDirectory];
FileList.Assign(FileListBox1.Items);
CurrDir := FileListbox1.Directory;
for I := 2 to FileList.Count - 1 do begin
// for each directory, re-examine
FileListbox1.Directory := CurrDir + '\' + Copy(FileList[I], 2,
Length(FileList [I]) - 2);

ExamineDir(Mask);
Application.ProcessMessages;

end;
FileListbox1.Directory := CurrDir;

finally
FileList.Free;

end;
end;

➤ Listing 1: The ExamineDir method used to locate Delphi source code
files in a tree of directories

correspond to the mask passed as
a parameter, then it uses the ftDi-
rectory value for the FileType
property to get a list of the sub-
directories and recursively calls
itself for each of them. The effect of
these calls is to add the complete
path of all the found files to the
ListBox1 component. You can find
the complete source code of this
method in Listing 1.

Extracting The
Identifiers To Memory
Once the ListBox1 component con-
tains a list of the Pascal files to
examine, the user can press the
second button and extract the
identifiers from the files. To
accomplish this I’ve used the TNew-
Parser class I built for the source
code parsing (and described in the
references mentioned at the begin-
ning of this article). The core of the
ButtonWordsClick method is a for
loop opening each of the files we’ve
found with a TFileStream object,
creating a parser object for this
stream, and then parsing each
token in the stream. The parsing
code actually considers only
tokens of the toSymbol type, that is
the symbols, the identifiers of the
source code. In other words, the
parser automatically excludes
numeric constants, comments and
strings.

In the code for this loop, shown
in Listing 2, you can see that the
program has a little user feedback.
It updates a progress bar based on
the number of files (not the actual
percentof the parsing complete),
and selects in the ListBox the file it
is currently processing. The
reason for this extra code (even in
a program with little attention paid
to the user interface) is that the
execution of this method can take a
while. When I used this program
for the Delphi Developer’s Hand-
book it took about 20 minutes to
complete this method: it would
have taken much longer if I hadn’t
spent some time optimising it!

Most of my optimisation effort
involved the inner code, so I’ll
describe this in a while, after we’ve
seen what the program does when
the type of the parser token is
toSymbol. The first statement in this
internal code is a test used to
check:
➢ If the token is more than one

character long, to exclude sim-
ple identifiers as loop counters
or co-ordinates.

➢ If it doesn’t end with a number,
to exclude default names as
Form1 or Button1, which are
not terribly useful.

➢ If it isn’t part of a special list
called exclude list and stored in
the lbSkip ListBox. This list

includes common identifiers
and keywords, such as begin,
if, Application, TForm, etc.

If a token passes all these tests it is
added to the memory structure
holding all the found tokens. The
basic idea is that, for each token,
the program creates a TStringList
object which stores the names of
all the files containing the token.
The name of the token and the
related string list are then added to
the main list, as the string and the
object of the string item (as shown
in Figure 3). When a new token is
found, if it is part of the main list
the program adds the new file
name to the secondary list of the
corresponding object, otherwise
the program creates the new sec-
ondary list and adds the new entry
to the main list.

Optimising The Code
Actually the situation I’ve depicted
in Figure 2 corresponds to the
original version of the program.
The current situation is a little
more complex. First of all, instead
of creating a single main list the
program creates 26 of them, one
for each letter of the alphabet.
There are two reasons for doing
this. Firstly, the program is going
to generate one HTML file for each
letter, to keep the HTML files
smaller. Secondly, the program is
going to be faster, since accessing
the proper list is more efficient
than searching a huge one. This is
the code used to select the proper
ListBox depending on the first
letter of the token string:

LettList := LetterLists[
Upcase(TokenStr[1])];

In this statement LetterList is an
array of 26 ListBox components.
These components are not present
at design-time but they are created
when the program starts. In the
OnCreate event handler, shown in
Listing 3, you can see that for each
letter the program creates a new
TabSheet inside a page control, and
then places a new ListBox in it (as
you can see in Figure 4). Finally,
the program saves the list box in
the LetterList array, to make its
selection as fast as possible.

12 The Delphi Magazine Issue 30

procedure TFormCrossRef.ButtonWordsClick(Sender: TObject);
var
CurrFile, TokenStr: string;
I, Item, Idx: Integer;
FileText: TStream;
Parse: TNewParser;
sList: TStringList;
LettList: TListBox;

begin
// for each file listed
ProgressBar1.Max := ListBoxFiles.Items.Count - 1;
for I := 0 to ListBoxFiles.Items.Count - 1 do begin
// select the current file, to show the progress
ListBoxFiles.ItemIndex := I;
// get the current file
CurrFile := ListBoxFiles.Items [I];
// open it as a text file
FileText := TFileStream.Create (CurrFile, fmOpenRead);
// pass the file to the custom parser
Parse := TNewParser.Create (FileText);
try
while Parse.Token <> toEOF do begin
case Parse.Token of
// ignore strings, comments, symbols...
toSymbol:
begin
TokenStr := Parse.TokenString;
// more than one character
if (Length (TokenStr) > 1) and
// doesn't end with a number
(TokenStr [Length (TokenStr)] > 'A') and
// not in the skip list
(lbSkip.Items.IndexOf (TokenStr) < 0) then

begin

// get the listbox for the current letter
LettList := LetterLists[Upcase(TokenStr[1])];
// look if the token is already in the list
// of found tokens for the current letter
Item := LettList.Items.IndexOf (TokenStr);
if Item < 0 then begin
// if not, create a new list for the files
sList := TStringList.Create;
sList.Sorted := True;
sList.Add (CurrFile);
// add the new word and the string list
LettList.Items.AddObject (TokenStr, sList);

end else begin
// add the new file reference
sList := TStringList(
LettList.Items.Objects[Item]);

Idx := sList.IndexOf (CurrFile);
if Idx < 0 then
sList.Add (CurrFile);

end;
end;

end;
end;
Parse.NextToken;
Application.ProcessMessages;

end;
finally
Parse.Free;
FileText.Free;

end;
ProgressBar1.Position := I;

end;
Beep;

end;

➤ Listing 2: The code associated with the second button and used for
extracting all the identifiers from the source code files

➤ Figure 3: Basic idea of the structure of the information in memory

➤ Figure 4: The output of the
program when the information
has been stored in memory.
Notice the page control with a
tab sheet for each letter of the
alphabet.

This is just one of the speed opti-
misations I’ve accomplished. The
biggest impact, however, comes
from sorting each of the lists,
including the lists of files. Besides
producing more helpful output,
sorting the lists makes the IndexOf
method faster. In fact, searching
tokens in the main lists and search-
ing for files in the secondary lists
(to avoid duplicates) are the two
operations which most slow down
this program.

The other element you can play
with is the sequence of the execu-
tion of the three tests of the if
statement described above. I’ve
tried to make the fastest test short,
to avoid executing the others
(thanks to the short-circuit evalua-
tion of Boolean expressions).
There are probably further optimi-
sations you can perform, including
using custom memory structures
and search techniques, instead of
using string lists, but this requires
a lot of work. When I first built this
program for Mastering Delphi 3 it
took many hours to execute.
Simply applying some common
sense techniques, as those just

February 1998 The Delphi Magazine 13

procedure TFormCrossRef.FormCreate(Sender: TObject);
var
Letter: Char;
List : TListBox;
Sheet: TTabSheet;

begin
// create 26 list boxes, and connects them...
for Letter := 'A' to 'Z' do begin
Sheet := TTabSheet.Create (self);
Sheet.PageControl := PageControl1;
Sheet.Caption := Letter;
List := TListBox.Create (self);
List.Parent := Sheet;
List.Align := alClient;
List.Sorted := True;
List.OnClick := LbWordsClick;
List.OnDblClick := LbWordsDblClick;
LetterLists [Letter] := List;

end;
end;

➤ Listing 3: When the program starts, it adds 26 sheets to a page
control and a list box to each page.

➤ Listing 4: The code use to generate the HTML cross-reference using
the information already collected in memory

procedure TFormCrossRef.ButtonHtmlClick(Sender: TObject);
var
Dest: TStream;
HTML, OutFileName: string;
I, J: Integer;
Letter: Char;
sList: TStringList;

begin
FileListBox1.Mask := '*.dpr';
FileListBox1.FileType := [ftNormal];
SetLength (HTML, 10000);
// for each letter
for Letter := 'A' to 'Z' do begin
// select the tab sheet we are working on
PageControl1.ActivePage :=
LetterLists [Letter].Parent as TTabSheet;

HTML := '';
// add head
HTML :=
'<HTML><HEAD>' + #13#10 +
'<TITLE>CrossReference</TITLE>' + #13#10 +
'</HEAD>'#13#10 +
'<BODY>'#13#10 +
'<CENTER><I>' + EditBookDescription.Text +
'</I></CENTER></H3>

'#13#10 +
'<H1><CENTER>Cross Reference: ' +
Letter + '</CENTER></H1>

<HR>'#13#10;

// for each identifier starting with the letter
for I := 0 to LetterLists [Letter].Items.Count - 1 do
begin
Application.ProcessMessages;
// add the word
AppendStr (HTML, '<H4>' + LetterLists [Letter].

Items[I] + '</H4>'#13#10);
// sub-list
AppendStr (HTML, ''#13#10);
sList := TStringList (
LetterLists [Letter].Items.Objects [I]);

// add file names
for J := 0 to sList.Count - 1 do
AppendStr (HTML, '<A HREF="' +
ChangeFileExt (DosPathToUnixPath (
Copy(sList[J], Length(EditPath.Text) + 1,
1000)), '_' + Copy (ExtractFileExt(sList[J]),
2, 3)) + '.htm ">' + Copy (sList[J],
Length(EditPath.Text) + 1, 1000) +
''#13#10);

AppendStr (HTML, ''#13#10);
end;
// add tail
AppendStr (HTML,
'
<I><CENTER>' + 'File generated by CrossRef, ‘+
‘a tool by Marco Cantù' +
'</CENTER></I>'#13#10 + '</BODY> </HTML>');

// create the output file
OutFileName := EditPath.Text + Letter + '.htm';
Dest := TFileStream.Create (OutFileName,
fmCreate or fmOpenWrite or fmShareDenyNone);

try
Dest.WriteBuffer (Pointer(HTML)^, Length (HTML));

finally
Dest.Free;

end;
end; // for Letter
Beep; // done

end;

described, I reduced the time to
about one tenth, which was a lot
more reasonable!

As a further optimisation, con-
sider that this program requires a
lot of memory (several Mb for a
large collection of files), so closing
all the other applications while it
runs can help speed it up.

Looking At
The Data In Memory
During the generation of the lists of
identifiers, and when this opera-
tion is completed, there are a few
things you can do. You can click on
the items of each of the list boxes
with the identifier to see the list of
the files in which this identifier is
used (as shown in Figure 4):

procedure TFormCrossRef.LbWordsClick(

Sender: TObject);

begin

with (Sender as TListBox) do

lbList.Items := TStringList(

Items.Objects [ItemIndex]);

end;

This is helpful as a sort of preview,
but also to find out if there are any
identifiers which are too common,
and should be removed from the
generated code and added to the
skip list (particularly if the genera-
tion of the words is still active). At
the end you might want to save the
new skip list to a file and then
modify the program accordingly
(the words to skip are hard coded
into a list box, in fact, simply

because after a little tuning they
are not supposed to change).

The HTML Generation
The third button on the main form
finally does the HTML generation.
Contrary to what you might think
this is actually the simplest part of
the program, since we have
already collected all the informa-
tion we need. The ButtonHtmlClick
method (see Listing 4) has an outer
for loop, used to examine each
letter:

for Letter := ‘A’ to ‘Z’ do

Inside the loop the program cre-
ates a string (called HTML) and fills
it with the information. After
adding a header and a title, the
code has a for loop which outputs
each identifier (or token) from the
main list of the specific letter, and
an internal for loop which lists
the files where each identifier
appears.

These file references are added
as anchors, or links, and the code
used for this operation probably
requires some explanation. The
string, added to the output for
each file, has this structure:

‘<A HREF="’ + reference +
‘.htm “>’ + description +
‘’#13#10);

The description of the file is simply
its name, which is extracted from

14 The Delphi Magazine Issue 30

➤ Figure 5: The sequence of HTML pages you can open while browsing
the published database data in the normal sequence, from the list of
customers, to its orders, to the details of the order

the proper list (sList[J]). How-
ever, instead of using the full
pathname the program shows the
relative path from the base direc-
tory (where the file search started
and where the generated HTML
files will be saved). This is impor-
tant because the files might be
moved to a different drive or direc-
tory, maybe even a CD-ROM. Here
is the code used to compute the
relative path (that is, remove a
number of characters correspond-
ing to the path of the root directo-
ries from the complete file path):

Copy(sList[J], Length(
EditPath.Text) + 1, 1000);

Building the reference is more
complex. First of all, we need to use
the relative path again. Then this
path must be converted to a Unix
style path (which uses the / charac-
ter instead of the \ character), oth-
erwise the HTML files will not work
properly with Netscape Navigator
and other browsers.

Finally, the actual HTML files use
a special naming convention:
foo.pas becomes foo_pas.htm. To
make this change I use the Change-
FileExt function, using as second
parameter the underscore plus the
original extension, then I append
the .htm string:

ChangeFileExt (FileName, ‘_’ +
Copy(ExtractFileExt(
FileName), 2, 3)) + ‘.htm’;

Now that you know the rationale of
most of my choices, the source
code of the ButtonHtmlClick
method (see Listing 4) should
become readable.

Once the program has created
the HTML file inside a string, it
saves this string to a physical file
with the single low-level routine
WriteBuffer. There are certainly
higher-level techniques to save a
string to a file, but using a stream
and saving the data of the string
directly from its memory area (that
is, the address the string refers to) I
think is neat.

Temporary Conclusion
This completes the description of
the cross-referencing tool I’ve

written for indexing Delphi source
code files. On the companion disk
you will find the complete source
code of the example, ready to be
compiled and used. Of course
there are plenty of improvements
you can make, both to the user
interface (which was never meant
to be used by others) and to the
capabilities of the tool itself. I’m
working on integrating this cross-
referencer, the PasToWeb HTML
generator and some extra tools
into a single powerful wizard, but
I’m not sure when this tool will be
completed. Check my web site for
updates.

Cross Referencing A Database
After I wrote this program, I real-
ised that a similar technique could
be used for cross-referencing a
complex database while publish-
ing it on a web site. Consider the
tables from the DBDEMOS example
included with Delphi: using the
customers, orders and items tables
you can build a complex structure
of HTML files and publish it on the
Web. The main HTML file is a table
with information about each cus-
tomer (see the first step of Figure
5). Each customer is linked to an
HTML file with a table listing the
orders (the second step of Figure
5) and each order with a further

HTML file including the details
(the items) of the order itself (the
third step of Figure 5).

This information is extracted
from three tables which have a
master-detail relationship. A
fourth table, Parts, is used to add a
lookup field to the Items table and
provide a textual description for
the ordered items.

Generating The Tables
Generating the HTML files for this
structure is not too difficult. Most
of the HTML files generated by the
DbCross program are based on
HTML tables, showing an entire
database table or a portion of it (in
the case of detail tables). The
HTML code generation is quite
simple. I’ve inherited two classes
from the TStringList class. The
first is THtmlStrings and includes
code for generating simple head-
ers and footers. The second,
THtmlData, is a further subclass of
THtmlStrings and adds the genera-
tion of the HTML table header.

Besides this, the THtmlData class
includes the AddTableRow method
you can see in Listing 5. In this
method, Data is a local field
assigned to an existing data set in
the constructor and LinkStr is a
parameter indicating the initial let-
ters of the file we should connect

16 The Delphi Magazine Issue 30

to the first column of the table. To
make this work, of course, the first
field of the table should be the one
providing the link to the further
details.

The rest of the code used to
generate the base files is quite
simple, so I’ll leave you to study it
(the code for DbCross is on the
companion disk of course).

Generating The
Cross-Reference
What is interesting is that the
DbCross program has a second
capability. While parsing the three
levels of its master-detail struc-
ture, it can collect information
from the Items table.

The aim is to be able to build, for
each entry of the Parts table, a list
of the orders where the part
appears. Each of these lists is built
in memory, while processing the
tables, and then saved to a sepa-
rate file. The code for the memory
parsing is very similar to the
source code cross-reference,
although a little simpler.

The program keeps track of the
various parts listed in each order
by adding each unique part to the
ListOfLists string list. The object
portion of the items in this list is a
further string list (of type
THtmlStrings) which stores infor-
mation on the orders where the
particular part appears. However,
instead of keeping in memory only
the number of the order, the
program already builds the HTML
anchors for the link, providing a
more detailed description (as you
can see for yourself in the central
step in Figure 6).

Listing 6 shows a portion of code
inside the triple while loop scan-
ning the master table, the first
detail table and the third detail
table. As you can see, if a part is
already in the list the program
extracts its object portion and con-
verts it to the THtmlStrings type, to
add the new element to it. Other-
wise the program creates a brand
new string list, then adds the same
information to it.

At the end, the program also
parses the Parts table in order to
generate the main file for the
cross-reference. In Figure 6 you
can see the navigation of the cross
reference starting with the list of
parts, accessing the actual cross

procedure THtmlData.AddTableRow (LinkStr: string);
var
I: Integer;

begin
// new row, with table data (tag <td>)
Add('<tr>');
if LinkStr <> '' then
Add('<td>' +

Data.Fields[0].DisplayText + '</td>')
else
Add('<td>' + Data.Fields[0].DisplayText + '</td>');

for I := 1 to Data.FieldCount - 1 do
if Data.Fields[I].Visible then
if Data.Fields[I].DisplayText <> '' then
Add('<td>' + Data.Fields[I].DisplayText + '</td>')

else
Add('<td><p></td>');

Add('</tr>');
end;

➤ Listing 5: The method of the THtmlData string list subclass used to
generate the lines of the HTML tables extracting database data

reference and finally looking at the
details.

Publishing A
Database On The Web
This program generates all the
HTML files from a single button
click. The operation takes about 20
seconds on my (slow) computer,
and creates 321 files totalling
371Kb. Put these files on your web
site and you are in the diving
equipment business! Jokes aside, if
you want to publish a database on
the web, you can use a similar tech-
nique if the following conditions
apply.

Firstly, the data doesn’t change
very often. A catalogue updated
monthly or weekly is a good exam-
ple. Even if you can update the site
automatically every night this is
still a possible technique. For real
time information this is certainly
not a good approach!

Secondly, the amount of data is
limited, smaller than your avail-
able space on the Web site of
course. This seems obvious, but
the formatted HTML output might
take much more space than the
original database files. If you use
CGI or ISAPI to generate the HTML
from the database data on the fly
you might need less disk space.

➤ Figure 6: The sequence of HTML pages you can open while browsing
the published database data using the cross reference, from the list
of parts, to the orders, to the details of each order

February 1998 The Delphi Magazine 17

// at the beginning
ListOfLists := TStringList.Create;
// for each item of each order of each customer...
// search the part in the cross reference
Index := ListOfLists.IndexOf(TableItemsPartNo.AsString);
// if not found create a new entry
if Index < 0 then begin
HtmlMem := THtmlStrings.Create;
HtmlMem.AddHeader ('Part: ' +
TableItemsPart.AsString);

Index := ListOfLists.AddObject (
TableItemsPartNo.AsString, HtmlMem);

end;
// add the reference to the list
THtmlStrings(ListOfLists.Objects[Index]).Add('<a href="Ord' +
TableItemsOrderNo.AsString + '.htm">' + TableCustomersCompany.AsString +
' Order No. ' + TableOrders.FieldByName('OrderNo').AsString + '<p>');

➤ Listing 6: Code used to build the database cross-reference in memory

Lastly, the number of ways to
navigate is limited. If there are
three or four obvious paths of navi-
gation (a main one and a two or
three cross-references) you can
generate all of them statically. Oth-
erwise, the cross-referencing
HTML files will be way larger than
the files with the actual data and
the time required to generate them
might be too much.

Even if only parts of these condi-
tions apply to your specific needs,
you can consider using a mixed
approach. You can have a portion
of the data and some navigational

files generated periodically, and
have a CGI and ISAPI application on
the site as well, to let user do free
searches and follow other less
frequent paths.

Conclusion
In this article I’ve applied the same
cross-referencing technique to two
totally different examples. The first
was a source code cross-reference
I used for the CD-ROMs accompa-
nying my recent books, the second
was an example of publishing data-
base tables on the web with multi-
ple navigation paths. There are

probably many other cases where
this technique (or a variation of it)
might come in handy. If you bump
into a good idea or application, let
me know.

Marco Cantù is the author of Mas-
tering Delphi 3 and Delphi Devel-
oper’s Handbook, does advanced
Delphi training world wide, en-
joys speaking at conferences, and
can be reached on his web site
(www.marcocantu.com) and by
email (marco@marcocantu.com).
Also check out also his newsgroup
(there’s link on his website).

	The Main Form
	Extracting The files
	Extracting The Identifiers To Memory
	Optimising The Code
	Looking At The Data In Memory
	The HTML Generation
	Temporary Conclusion
	Cross Referencing A Database
	Generating The Tables
	Generating The Cross-Reference
	Publishing A Database On The Web
	Conclusion

